Chang Liu

— **८** +1-217-530-7242 — **☑** changliu.cv@gmail.com — **?** https://ruachang.github.io/

EDUCATION

University of Illinois, Urbana-Champaign

Champaign, IL

Ph.D. in Computer Science

Aug. 2025 - Present

- Advisor: Svetlana Lazebnik
- Fellowship: Amazon AI PhD Fellowship

University of Illinois, Urbana-Champaign

Champaign, IL Master of Engineering in Electrical and Computer Engineering Aug. 2023 - Dec. 2024

• GPA: 4.0 / 4.0

Guangzhou, China

Sun Yat-sen University

Aug. 2019 - Jun. 2023

Bachelor of Engineering in Electronic Information Science and Technology

- C. Liu, V. Shah, A. Cui, S. Lazebnik, "UnZipLoRA: Separating Content and Style from a Single Image", ICCV 2025 Highlight
- A. Cui, J. Mahajan, V. Shah, P. Gomathinayagam, C. Liu, S. Lazebnik, "Street TryOn: Learning In-the-Wild Virtual Try-On from Unpaired Person Images", Best Paper at CVFAD Workshop, CVPR 2024, WACV 2025
- C. Liu, D. Zhang, "A selective quantization approach for optimizing quantized inference engine", Proceedings of the 2023 11th International Conference on Information Systems and Computing Technology (ISCTech), March 2023.

Research

Image Generation and Editing Controlled by Multi-modal Low-level Guidance for Diffusion Models Research Assistant at UIUC, supervised by Professor Svetlana Lazebnik May 2025 - Present

- Adapted a transformer-based **modality prediction module** extracted from diffusion models, resulting in state-of-the-art accuracy for downstream computer vision tasks like depth, edge, and pose prediction.
- Implemented multi-modal guided image generation, achieving accurate controlled generation based on diverse low-level inputs (depth, edge, and pose references).
- Developing an **image editing pipeline** through low-level guidance modifications to support applications like interactive dragging and pose transfer.

UnZipLoRA: Separating Content and Style from a Single Image (ICCV 2025 Highlight)

Research Assistant at UIUC, supervised by Professor Svetlana Lazebnik

May 2024 - May 2025

- Designed a comprehensive strategy to effectively separate subject with style in diffusion model, enabling flexible text-to-image generation using either single-element or combining elements across multiple images.
- Invented a novel method to ensure robust identity preservation for both the extracted subject and style elements, leading to highly personalized generation.
- Validated the method through quantitative metrics and human evaluation across over 50 cases, demonstrating superior performance (SOTA) and preferred status over competitors by 75%.

Projects

Zero-Shot Adaptation via Image Reference for Unified Diffusion Models

Python, PyTorch, Unified multi-modal models

Sep. 2025 – Present

- Demonstrated the ability of the base unified multi-modal models to execute a range of tasks zero-shot.
- Designing novel input methodologies to integrate reference information efficiently, aiming to optimize performance gains and control.

Image-to-prompt Synthesis for Improved Diffusion Model Performance

Python, PyTorch, Multi-modal

Feb. 2024 – May 2024

- Developed a fine-tuning method for image-to-prompt generation, allowing diffusion model reconstruct the original images more accurately.
- Created a dataset of prompt-synthetic image pairs by employing techniques such as prompt regeneration using LLMs and statistical analysis.
- Proposed a multi-stage fine-tuning approach for general caption model(BLIP2), utilizing strategic dataset selection and customized loss functions.

Technical Skills

Programming Languages: Python, C++, C, Shell, MATLAB, LaTeX, System Verilog, Verilog Machine Learning Tools and Libraries: PyTorch, TensorRT, OpenCV, sklearn, Diffusers, Git, Linux, Wandb Related Courses: Computer Vision, Deep Generative Models, Pattern Recognition, Artificial Intelligence